Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.18.158584

ABSTRACT

COVID-19, caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), represents a global crisis. Key to SARS-CoV-2 therapeutic development is unraveling the mechanisms driving high infectivity, broad tissue tropism and severe pathology. Our cryo-EM structure of SARS-CoV-2 spike (S) glycoprotein reveals that the receptor binding domains (RBDs) tightly and specifically bind the essential free fatty acid (FFA) linoleic acid (LA) in three composite binding pockets. The pocket also appears to be present in the highly pathogenic coronaviruses SARS-CoV and MERS-CoV. Lipid metabolome remodeling is a key feature of coronavirus infection, with LA at its core. LA metabolic pathways are central to inflammation, immune modulation and membrane fluidity. Our structure directly links LA and S, setting the stage for interventions targeting LA binding and metabolic remodeling by SARS-CoV-2. One Sentence SummaryA direct structural link between SARS-CoV-2 spike and linoleic acid, a key molecule in inflammation, immune modulation and membrane fluidity.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL